|
|
@ -15,36 +15,73 @@ Vector3d UJoint::GetSecondWorldPosition() const{ |
|
|
|
return SecondLink->Position + SecondLink->Orientation * SecondLocalPosition; |
|
|
|
return SecondLink->Position + SecondLink->Orientation * SecondLocalPosition; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Vector3d UJoint::GetFirstWorldAxis() const{ |
|
|
|
|
|
|
|
return FirstLink->Orientation * FirstRotateAxis; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
Vector3d UJoint::GetSecondWorldAxis() const{ |
|
|
|
|
|
|
|
return SecondLink->Orientation * SecondRotateAxis; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void UJoint::SolvePosition(const double H) const{ |
|
|
|
void UJoint::SolvePosition(const double H) const{ |
|
|
|
ULink* L1 = FirstLink; |
|
|
|
ULink* L1 = FirstLink; |
|
|
|
ULink* L2 = SecondLink; |
|
|
|
ULink* L2 = SecondLink; |
|
|
|
|
|
|
|
|
|
|
|
// Positional Constraints
|
|
|
|
// Positional Constraints
|
|
|
|
const Vector3d R1 = GetFirstWorldPosition(); |
|
|
|
{ |
|
|
|
const Vector3d R2 = GetSecondWorldPosition(); |
|
|
|
const Vector3d R1 = GetFirstWorldPosition(); |
|
|
|
const Vector3d D = R1 - R2; // Original PBD (not R2 - R1), because Impulse P is negated
|
|
|
|
const Vector3d R2 = GetSecondWorldPosition(); |
|
|
|
const Vector3d N = D.normalized(); |
|
|
|
const Vector3d D = R1 - R2; // Original PBD (not R2 - R1), because Impulse P is negated
|
|
|
|
const double C = D.norm(); |
|
|
|
const Vector3d N = D.normalized(); |
|
|
|
const Matrix3d I1 = L1->GetInertia(); |
|
|
|
const double C = D.norm(); |
|
|
|
const Matrix3d I2 = L2->GetInertia(); |
|
|
|
const Matrix3d I1 = L1->GetInertia(); |
|
|
|
const double M1 = L1->Mass; |
|
|
|
const Matrix3d I2 = L2->GetInertia(); |
|
|
|
const double M2 = L2->Mass; |
|
|
|
const double M1 = L1->Mass; |
|
|
|
|
|
|
|
const double M2 = L2->Mass; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const double W1 = L1->GetPositionalInverseMass(R1, N); |
|
|
|
|
|
|
|
const double W2 = L2->GetPositionalInverseMass(R2, N); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
constexpr double A = 1. / 10000000; // Compliance (inverse of stiffness)
|
|
|
|
|
|
|
|
const Vector3d P = -C / (W1 + W2 + A / (H * H)) * N; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L1->Position += P / M1; |
|
|
|
|
|
|
|
L2->Position -= P / M2; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Vector3d T1 = I1.inverse() * R1.cross(P); |
|
|
|
|
|
|
|
Vector3d T2 = I2.inverse() * R2.cross(P); |
|
|
|
|
|
|
|
Quaterniond Add1 = Quaterniond(0, T1.x(), T1.y(), T1.z()) * L1->Orientation * 0.5; |
|
|
|
|
|
|
|
Quaterniond Add2 = Quaterniond(0, T2.x(), T2.y(), T2.z()) * L2->Orientation * 0.5; |
|
|
|
|
|
|
|
//L1->Orientation = L1->Orientation + Add1;
|
|
|
|
|
|
|
|
//L2->Orientation = L2->Orientation- Add2;
|
|
|
|
|
|
|
|
//UE_LOG(LogTemp, Log, TEXT("%f %f"), (T1).norm(), T2.norm());
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
const double W1 = L1->GetPositionalInverseMass(R1, N); |
|
|
|
// Rotational Constraints
|
|
|
|
const double W2 = L2->GetPositionalInverseMass(R2, N); |
|
|
|
{ |
|
|
|
|
|
|
|
const Vector3d A1 = GetFirstWorldAxis(); |
|
|
|
|
|
|
|
const Vector3d A2 = GetSecondWorldAxis(); |
|
|
|
|
|
|
|
const Vector3d Q = A1.cross(A2); |
|
|
|
|
|
|
|
const Vector3d N = Q.normalized(); |
|
|
|
|
|
|
|
const double Theta = Q.norm(); |
|
|
|
|
|
|
|
|
|
|
|
const double A = 0.000001 / (H * H); |
|
|
|
const Matrix3d I1 = L1->GetInertia(); |
|
|
|
const Vector3d P = -C / (W1 + W2 + A) * N; |
|
|
|
const Matrix3d I2 = L2->GetInertia(); |
|
|
|
|
|
|
|
|
|
|
|
L1->Position += P / M1; |
|
|
|
const double W1 = L1->GetRotationalInverseMass(N); |
|
|
|
L2->Position -= P / M2; |
|
|
|
const double W2 = L2->GetRotationalInverseMass(N); |
|
|
|
|
|
|
|
|
|
|
|
Vector3d T1 = I1.inverse() * R1.cross(P); |
|
|
|
const double A = 0.000001 / (H * H); |
|
|
|
Vector3d T2 = I2.inverse() * R2.cross(P); |
|
|
|
const Vector3d P = -Theta / (W1 + W2 + A) * N; |
|
|
|
L1->Orientation += Quaterniond(0, T1.x(), T1.y(), T1.z()) * L1->Orientation * 0.5; |
|
|
|
|
|
|
|
L2->Orientation -= Quaterniond(0, T2.x(), T2.y(), T2.z()) * L2->Orientation * 0.5; |
|
|
|
Vector3d T1 = I1.inverse() * P; |
|
|
|
|
|
|
|
Vector3d T2 = I2.inverse() * P; |
|
|
|
|
|
|
|
T1 = T2 = P; |
|
|
|
|
|
|
|
//L1->Orientation += Quaterniond(0, T1.x(), T1.y(), T1.z()) * L1->Orientation * 0.5;
|
|
|
|
|
|
|
|
//L2->Orientation -= Quaterniond(0, T2.x(), T2.y(), T2.z()) * L2->Orientation * 0.5;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// UE_LOG(LogTemp, Log, TEXT("%f | %f"), W1, W2);
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
// Rotational Constraints
|
|
|
|
|
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void UJoint::SolveVelocity(const double H) const{ |
|
|
|
void UJoint::SolveVelocity(const double H) const{ |
|
|
@ -55,7 +92,7 @@ void UJoint::SolveVelocity(const double H) const{ |
|
|
|
const Vector3d V1 = L1->Velocity; |
|
|
|
const Vector3d V1 = L1->Velocity; |
|
|
|
const Vector3d V2 = L2->Velocity; |
|
|
|
const Vector3d V2 = L2->Velocity; |
|
|
|
|
|
|
|
|
|
|
|
constexpr double MuLin = 100000; |
|
|
|
constexpr double MuLin = 100000; // Damping strength
|
|
|
|
const Vector3d DeltaV = (V2 - V1) * UKismetMathLibrary::Min(MuLin * H, 1); |
|
|
|
const Vector3d DeltaV = (V2 - V1) * UKismetMathLibrary::Min(MuLin * H, 1); |
|
|
|
|
|
|
|
|
|
|
|
const Vector3d R1 = GetFirstWorldPosition(); |
|
|
|
const Vector3d R1 = GetFirstWorldPosition(); |
|
|
@ -74,8 +111,8 @@ void UJoint::SolveVelocity(const double H) const{ |
|
|
|
|
|
|
|
|
|
|
|
L1->Velocity += P / L1->Mass; |
|
|
|
L1->Velocity += P / L1->Mass; |
|
|
|
L2->Velocity -= P / L2->Mass; |
|
|
|
L2->Velocity -= P / L2->Mass; |
|
|
|
L1->AngularVelocity += I1.inverse() * R1.cross(P); |
|
|
|
//L1->AngularVelocity += I1.inverse() * R1.cross(P);
|
|
|
|
L2->AngularVelocity -= I2.inverse() * R2.cross(P); |
|
|
|
//L2->AngularVelocity -= I2.inverse() * R2.cross(P);
|
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
UJoint::UJoint() |
|
|
|
UJoint::UJoint() |
|
|
|