#define GLFW_INCLUDE_VULKAN #include #include #include #include #include #include #include #include #include #include #include const std::vector deviceExtensions = { VK_KHR_SWAPCHAIN_EXTENSION_NAME }; #ifndef NDEBUG #define ENABLE_VALIDATION_LAYERS #endif #ifdef ENABLE_VALIDATION_LAYERS const std::vector validationLayers = { "VK_LAYER_KHRONOS_validation" }; bool checkValidationLayerSupport(){ uint32_t layerCount; vkEnumerateInstanceLayerProperties(&layerCount, nullptr); std::vector availableLayers(layerCount); vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data()); for (const char* layerName : validationLayers){ bool layerFound = false; for (const auto& layerProperties : availableLayers){ if (strcmp(layerName, layerProperties.layerName) == 0){ layerFound = true; break; } } if (!layerFound){ return false; } } return true; } #endif constexpr int MAX_FRAMES_IN_FLIGHT = 2; class Timer { public: explicit Timer(){ start = std::chrono::system_clock::now(); } ~Timer(){ size_t nanoseconds = (std::chrono::system_clock::now() - start).count(); printf("Timer: %zu mus\n", nanoseconds / 1000); } private: std::chrono::time_point start; }; std::vector readFile(const std::string& fileName){ std::ifstream file(fileName, std::ios::ate | std::ios::binary); if (!file.is_open()){ throw std::runtime_error("failed to open file!"); } size_t fileSize = file.tellg(); std::vector buffer(fileSize); file.seekg(0); file.read(buffer.data(), static_cast(fileSize)); file.close(); return buffer; } struct Vertex { glm::vec2 pos; glm::vec3 color; static VkVertexInputBindingDescription getBindingDescription(){ VkVertexInputBindingDescription bindingDescription {}; bindingDescription.binding = 0; bindingDescription.stride = sizeof(Vertex); bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX; return bindingDescription; } static std::array getAttributeDescriptions(){ std::array attributeDescriptions {}; attributeDescriptions[0].binding = 0; attributeDescriptions[0].location = 0; attributeDescriptions[0].format = VK_FORMAT_R32G32_SFLOAT; attributeDescriptions[0].offset = offsetof(Vertex, pos); attributeDescriptions[1].binding = 0; attributeDescriptions[1].location = 1; attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT; attributeDescriptions[1].offset = offsetof(Vertex, color); return attributeDescriptions; } }; const std::vector vertices = { {{0.0, -0.5}, {1, 0, 0}}, {{0.5, 0.5}, {0, 1, 0}}, {{-0.5, 0.5}, {0, 0, 1}} }; class MyApp { public: void run(){ initWindow(); initVulkan(); mainLoop(); cleanup(); } private: GLFWwindow *window = nullptr; void initWindow(){ glfwInit(); glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API); glfwWindowHint(GLFW_RESIZABLE, GLFW_TRUE); window = glfwCreateWindow(800, 600, "Vulkan Simulation", nullptr, nullptr); } void initVulkan(){ createInstance(); createSurface(); pickPhysicalDevice(); createLogicalDevice(); createSwapchain(); createImageViews(); createRenderPass(); createGraphicsPipeline(); createFramebuffers(); createVertexBuffer(); createCommandPool(); createCommandBuffers(); createSyncObjects(); } VkInstance instance = VK_NULL_HANDLE; void createInstance(){ #ifdef ENABLE_VALIDATION_LAYERS if (!checkValidationLayerSupport()){ throw std::runtime_error("validation layers requested, but not available!"); } #endif VkApplicationInfo applicationInfo {}; applicationInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; applicationInfo.pApplicationName = "Coole Simulation"; applicationInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0); applicationInfo.pEngineName = "No Engine"; applicationInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0); applicationInfo.apiVersion = VK_API_VERSION_1_0; uint32_t glfwExtensionCount = 0; const char** glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount); VkInstanceCreateInfo instanceCreateInfo {}; instanceCreateInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; instanceCreateInfo.pApplicationInfo = &applicationInfo; instanceCreateInfo.enabledExtensionCount = glfwExtensionCount; instanceCreateInfo.ppEnabledExtensionNames = glfwExtensions; #ifdef ENABLE_VALIDATION_LAYERS instanceCreateInfo.enabledLayerCount = validationLayers.size(); instanceCreateInfo.ppEnabledLayerNames = validationLayers.data(); #else instanceCreateInfo.enabledLayerCount = 0; #endif if (vkCreateInstance(&instanceCreateInfo, nullptr, &instance) != VK_SUCCESS){ throw std::runtime_error("failed to create instance!"); } } VkSurfaceKHR surface = VK_NULL_HANDLE; void createSurface(){ if (glfwCreateWindowSurface(instance, window, nullptr, &surface) != VK_SUCCESS){ throw std::runtime_error("failed to create window surface!"); } } VkPhysicalDevice physicalDevice = VK_NULL_HANDLE; void pickPhysicalDevice(){ uint32_t deviceCount = 0; vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr); if (deviceCount == 0){ throw std::runtime_error("failed to find GPUs with Vulkan support!"); } std::vector devices(deviceCount); vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data()); for (const VkPhysicalDevice &device : devices){ if (isDeviceSuitable(device)){ physicalDevice = device; break; } } if (physicalDevice == VK_NULL_HANDLE){ throw std::runtime_error("failed to find a suitable GPU!"); } VkPhysicalDeviceProperties properties; vkGetPhysicalDeviceProperties(physicalDevice, &properties); printf("Picked physical device: %s\n", properties.deviceName); } struct QueueFamilyIndices { std::optional graphicsFamily; std::optional computeFamily; std::optional presentFamily; bool isComplete() const { return graphicsFamily.has_value() && computeFamily.has_value() && presentFamily.has_value(); } std::set uniqueQueueFamilies(){ return {graphicsFamily.value(), presentFamily.value(), computeFamily.value()}; } }; QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device){ uint32_t queueFamilyCount = 0; vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr); std::vector queueFamilies(queueFamilyCount); vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data()); QueueFamilyIndices indices {}; uint32_t i = 0; for (const VkQueueFamilyProperties& queueFamilyProperties : queueFamilies){ if (queueFamilyProperties.queueFlags & VK_QUEUE_GRAPHICS_BIT){ indices.graphicsFamily = i; } if (queueFamilyProperties.queueFlags & VK_QUEUE_COMPUTE_BIT){ indices.computeFamily = i; } VkBool32 presentSupport = false; vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport); if (presentSupport){ indices.presentFamily = i; } if (indices.isComplete()){ break; } i++; } return indices; } bool isDeviceSuitable(VkPhysicalDevice device){ VkPhysicalDeviceProperties deviceProperties; vkGetPhysicalDeviceProperties(device, &deviceProperties); VkPhysicalDeviceFeatures deviceFeatures; vkGetPhysicalDeviceFeatures(device, &deviceFeatures); QueueFamilyIndices indices = findQueueFamilies(device); bool extensionsSupported = checkDeviceExtensionSupport(device); bool swapChainAdequate = false; if (extensionsSupported){ SwapchainSupportDetails details = querySwapchainSupport(device); swapChainAdequate = !details.formats.empty() && !details.presentModes.empty(); } return indices.isComplete() && extensionsSupported && swapChainAdequate; } static bool checkDeviceExtensionSupport(VkPhysicalDevice device){ std::set required(deviceExtensions.begin(), deviceExtensions.end()); uint32_t extensionCount; vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr); std::vector availableExtensions(extensionCount); vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data()); for (const VkExtensionProperties& extension : availableExtensions){ required.erase(extension.extensionName); } return required.empty(); } struct SwapchainSupportDetails { VkSurfaceCapabilitiesKHR capabilities {}; std::vector formats; std::vector presentModes; }; SwapchainSupportDetails querySwapchainSupport(VkPhysicalDevice device){ SwapchainSupportDetails details; vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities); uint32_t formatCount; vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr); if (formatCount != 0){ details.formats.resize(formatCount); vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, details.formats.data()); } uint32_t presentModeCount; vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, nullptr); if (presentModeCount != 0){ details.presentModes.resize(presentModeCount); vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.presentModes.data()); } return details; } VkDevice device = VK_NULL_HANDLE; VkQueue graphicsQueue = VK_NULL_HANDLE; VkQueue presentQueue = VK_NULL_HANDLE; void createLogicalDevice(){ QueueFamilyIndices indices = findQueueFamilies(physicalDevice); std::vector queueCreateInfos; float queuePriority = 1.0f; for (uint32_t queueFamily : indices.uniqueQueueFamilies()){ VkDeviceQueueCreateInfo queueCreateInfo {}; queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateInfo.queueFamilyIndex = queueFamily; queueCreateInfo.queueCount = 1; queueCreateInfo.pQueuePriorities = &queuePriority; queueCreateInfos.push_back(queueCreateInfo); } VkPhysicalDeviceFeatures deviceFeatures {}; VkDeviceCreateInfo createInfo {}; createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; createInfo.pQueueCreateInfos = queueCreateInfos.data(); createInfo.queueCreateInfoCount = queueCreateInfos.size(); createInfo.pEnabledFeatures = &deviceFeatures; createInfo.enabledExtensionCount = deviceExtensions.size(); createInfo.ppEnabledExtensionNames = deviceExtensions.data(); #ifdef ENABLE_VALIDATION_LAYERS createInfo.enabledLayerCount = validationLayers.size(); createInfo.ppEnabledLayerNames = validationLayers.data(); #else createInfo.enabledLayerCount = 0; #endif if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS){ throw std::runtime_error("failed to create logical device!"); } vkGetDeviceQueue(device, indices.graphicsFamily.value(), 0, &graphicsQueue); vkGetDeviceQueue(device, indices.presentFamily.value(), 0, &presentQueue); } static VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector& availableFormats){ for (const auto& availableFormat : availableFormats){ if (availableFormat.format == VK_FORMAT_B8G8R8A8_SRGB && availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR){ return availableFormat; } } return availableFormats[0]; } static VkPresentModeKHR chooseSwapPresentMode(const std::vector& availablePresentModes){ return VK_PRESENT_MODE_FIFO_KHR; } VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities){ if (capabilities.currentExtent.width != std::numeric_limits::max()){ return capabilities.currentExtent; } else { int width, height; glfwGetFramebufferSize(window, &width, &height); VkExtent2D actualExtent = { static_cast(width), static_cast(height) }; actualExtent.width = std::clamp(actualExtent.width, capabilities.minImageExtent.width, capabilities.maxImageExtent.width); actualExtent.height = std::clamp(actualExtent.height, capabilities.minImageExtent.height, capabilities.maxImageExtent.height); return actualExtent; } } void createSwapchain(){ SwapchainSupportDetails swapchainSupport = querySwapchainSupport(physicalDevice); VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapchainSupport.formats); VkPresentModeKHR presentMode = chooseSwapPresentMode(swapchainSupport.presentModes); VkExtent2D extent = chooseSwapExtent(swapchainSupport.capabilities); uint32_t imageCount = swapchainSupport.capabilities.minImageCount + 1; if (swapchainSupport.capabilities.maxImageCount > 0 && imageCount > swapchainSupport.capabilities.maxImageCount){ imageCount = swapchainSupport.capabilities.maxImageCount; } VkSwapchainCreateInfoKHR createInfo {}; createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR; createInfo.surface = surface; createInfo.minImageCount = imageCount; createInfo.imageFormat = surfaceFormat.format; createInfo.imageColorSpace = surfaceFormat.colorSpace; createInfo.imageExtent = extent; createInfo.imageArrayLayers = 1; createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT; QueueFamilyIndices indices = findQueueFamilies(physicalDevice); uint32_t queueFamilyIndices[] = {indices.graphicsFamily.value(), indices.presentFamily.value()}; if (indices.graphicsFamily != indices.presentFamily){ createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT; createInfo.queueFamilyIndexCount = 2; createInfo.pQueueFamilyIndices = queueFamilyIndices; } else { createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE; } createInfo.preTransform = swapchainSupport.capabilities.currentTransform; createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR; createInfo.presentMode = presentMode; createInfo.clipped = VK_TRUE; createInfo.oldSwapchain = VK_NULL_HANDLE; if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapchain) != VK_SUCCESS){ throw std::runtime_error("failed to create swapchain!"); } vkGetSwapchainImagesKHR(device, swapchain, &imageCount, nullptr); swapchainImages.resize(imageCount); vkGetSwapchainImagesKHR(device, swapchain, &imageCount, swapchainImages.data()); swapchainImageFormat = surfaceFormat.format; swapchainExtent = extent; } void cleanupSwapchain(){ for (auto framebuffer : swapchainFramebuffers){ vkDestroyFramebuffer(device, framebuffer, nullptr); } for (auto imageView : swapchainImageViews){ vkDestroyImageView(device, imageView, nullptr); } vkDestroySwapchainKHR(device, swapchain, nullptr); } void recreateSwapchain(){ vkDeviceWaitIdle(device); cleanupSwapchain(); createSwapchain(); createImageViews(); createFramebuffers(); } VkSwapchainKHR swapchain = VK_NULL_HANDLE; std::vector swapchainImages; VkFormat swapchainImageFormat {}; VkExtent2D swapchainExtent {}; std::vector swapchainImageViews; void createImageViews(){ swapchainImageViews.resize(swapchainImages.size()); for (size_t i = 0; i < swapchainImages.size(); i++){ VkImageViewCreateInfo createInfo {}; createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; createInfo.format = swapchainImageFormat; createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D; createInfo.image = swapchainImages[i]; createInfo.components = { VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, }; createInfo.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}; if (vkCreateImageView(device, &createInfo, nullptr, &swapchainImageViews[i]) != VK_SUCCESS){ throw std::runtime_error("failed to create image views!"); } } } VkShaderModule createShaderModule(const std::vector &code){ VkShaderModuleCreateInfo createInfo {}; createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; createInfo.codeSize = code.size(); createInfo.pCode = reinterpret_cast(code.data()); VkShaderModule shaderModule; if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS){ throw std::runtime_error("failed to create shader module!"); } return shaderModule; } void createRenderPass(){ VkAttachmentDescription colorAttachment {}; colorAttachment.format = swapchainImageFormat; colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT; colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR; colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE; colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE; colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE; colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR; VkAttachmentReference colorAttachmentRef {}; colorAttachmentRef.attachment = 0; colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; VkSubpassDescription subpass {}; subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS; subpass.colorAttachmentCount = 1; subpass.pColorAttachments = &colorAttachmentRef; VkSubpassDependency dependency {}; dependency.srcSubpass = VK_SUBPASS_EXTERNAL; dependency.dstSubpass = 0; dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependency.srcAccessMask = 0; dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; VkRenderPassCreateInfo renderPassInfo {}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO; renderPassInfo.attachmentCount = 1; renderPassInfo.pAttachments = &colorAttachment; renderPassInfo.subpassCount = 1; renderPassInfo.pSubpasses = &subpass; renderPassInfo.dependencyCount = 1; renderPassInfo.pDependencies = &dependency; vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass); } VkRenderPass renderPass = VK_NULL_HANDLE; VkPipelineLayout pipelineLayout = VK_NULL_HANDLE; void createGraphicsPipeline(){ auto vertShaderCode = readFile("shaders/vert.spv"); auto fragShaderCode = readFile("shaders/frag.spv"); VkShaderModule vertShaderModule = createShaderModule(vertShaderCode); VkShaderModule fragShaderModule = createShaderModule(fragShaderCode); VkPipelineShaderStageCreateInfo vertShaderStageInfo {}; vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT; vertShaderStageInfo.module = vertShaderModule; vertShaderStageInfo.pName = "main"; VkPipelineShaderStageCreateInfo fragShaderStageInfo {}; fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT; fragShaderStageInfo.module = fragShaderModule; fragShaderStageInfo.pName = "main"; VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo, fragShaderStageInfo}; auto bindingDescription = Vertex::getBindingDescription(); auto attributeDescriptions = Vertex::getAttributeDescriptions(); VkPipelineVertexInputStateCreateInfo vertexInputInfo {}; vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; vertexInputInfo.vertexBindingDescriptionCount = 1; vertexInputInfo.pVertexBindingDescriptions = &bindingDescription; vertexInputInfo.vertexAttributeDescriptionCount = attributeDescriptions.size(); vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data(); VkPipelineInputAssemblyStateCreateInfo inputAssembly {}; inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; inputAssembly.primitiveRestartEnable = VK_FALSE; std::vector dynamicStates = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR }; VkPipelineDynamicStateCreateInfo dynamicState {}; dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dynamicState.dynamicStateCount = dynamicStates.size(); dynamicState.pDynamicStates = dynamicStates.data(); VkPipelineViewportStateCreateInfo viewportState {}; viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; viewportState.viewportCount = 1; viewportState.scissorCount = 1; VkPipelineRasterizationStateCreateInfo rasterizer {}; rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rasterizer.depthClampEnable = VK_FALSE; rasterizer.rasterizerDiscardEnable = VK_FALSE; rasterizer.polygonMode = VK_POLYGON_MODE_FILL; rasterizer.lineWidth = 1; rasterizer.cullMode = VK_CULL_MODE_BACK_BIT; rasterizer.frontFace = VK_FRONT_FACE_CLOCKWISE; rasterizer.depthBiasClamp = VK_FALSE; VkPipelineMultisampleStateCreateInfo multisample {}; multisample.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; multisample.sampleShadingEnable = VK_FALSE; multisample.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; VkPipelineColorBlendAttachmentState colorBlendAttachment {}; colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT; colorBlendAttachment.blendEnable = VK_FALSE; VkPipelineColorBlendStateCreateInfo colorBlending {}; colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; colorBlending.logicOpEnable = VK_FALSE; colorBlending.attachmentCount = 1; colorBlending.pAttachments = &colorBlendAttachment; VkPipelineLayoutCreateInfo pipelineLayoutInfo {}; pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO; vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout); VkGraphicsPipelineCreateInfo pipelineInfo {}; { pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipelineInfo.stageCount = 2; pipelineInfo.pStages = shaderStages; pipelineInfo.pVertexInputState = &vertexInputInfo; pipelineInfo.pInputAssemblyState = &inputAssembly; pipelineInfo.pViewportState = &viewportState; pipelineInfo.pRasterizationState = &rasterizer; pipelineInfo.pMultisampleState = &multisample; pipelineInfo.pColorBlendState = &colorBlending; pipelineInfo.pDynamicState = &dynamicState; pipelineInfo.layout = pipelineLayout; pipelineInfo.renderPass = renderPass; pipelineInfo.subpass = 0; } vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline); vkDestroyShaderModule(device, vertShaderModule, nullptr); vkDestroyShaderModule(device, fragShaderModule, nullptr); } VkPipeline graphicsPipeline = VK_NULL_HANDLE; std::vector swapchainFramebuffers; void createFramebuffers(){ swapchainFramebuffers.resize(swapchainImageViews.size()); for (size_t i = 0; i < swapchainImageViews.size(); i++){ VkImageView attachments[] = {swapchainImageViews[i]}; VkFramebufferCreateInfo framebufferInfo {}; framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO; framebufferInfo.renderPass = renderPass; framebufferInfo.attachmentCount = 1; framebufferInfo.pAttachments = attachments; framebufferInfo.width = swapchainExtent.width; framebufferInfo.height = swapchainExtent.height; framebufferInfo.layers = 1; vkCreateFramebuffer(device, &framebufferInfo, nullptr, &swapchainFramebuffers[i]); } } VkBuffer vertexBuffer = VK_NULL_HANDLE; VkDeviceMemory vertexBufferMemory = VK_NULL_HANDLE; uint32_t findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags propertyFlags){ VkPhysicalDeviceMemoryProperties memoryProperties; vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memoryProperties); for (uint32_t type = 0; type < memoryProperties.memoryTypeCount; type++){ if ((typeFilter & (1 << type)) && (memoryProperties.memoryTypes[type].propertyFlags & propertyFlags)){ return type; } } throw std::runtime_error("failed to find suitable memory type!"); } void createVertexBuffer(){ VkBufferCreateInfo bufferInfo{}; bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; bufferInfo.size = vertices.size() * sizeof(Vertex); bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT; bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; vkCreateBuffer(device, &bufferInfo, nullptr, &vertexBuffer); VkMemoryRequirements memoryRequirements; vkGetBufferMemoryRequirements(device, vertexBuffer, &memoryRequirements); VkMemoryAllocateInfo allocateInfo {}; allocateInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; allocateInfo.allocationSize = memoryRequirements.size; allocateInfo.memoryTypeIndex = findMemoryType(memoryRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT); vkAllocateMemory(device, &allocateInfo, nullptr, &vertexBufferMemory); vkBindBufferMemory(device, vertexBuffer, vertexBufferMemory, 0); void* data; vkMapMemory(device, vertexBufferMemory, 0, bufferInfo.size, 0, &data); memcpy(data, vertices.data(), bufferInfo.size); vkUnmapMemory(device, vertexBufferMemory); } VkCommandPool commandPool = VK_NULL_HANDLE; std::vector commandBuffers; void createCommandPool(){ QueueFamilyIndices indices = findQueueFamilies(physicalDevice); VkCommandPoolCreateInfo poolInfo {}; poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; poolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; poolInfo.queueFamilyIndex = indices.graphicsFamily.value(); vkCreateCommandPool(device, &poolInfo, nullptr, &commandPool); } void createCommandBuffers(){ commandBuffers.resize(MAX_FRAMES_IN_FLIGHT); VkCommandBufferAllocateInfo allocateInfo {}; allocateInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; allocateInfo.commandPool = commandPool; allocateInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; allocateInfo.commandBufferCount = commandBuffers.size(); vkAllocateCommandBuffers(device, &allocateInfo, commandBuffers.data()); } void recordCommandBuffer(VkCommandBuffer commandBuffer, uint32_t imageIndex){ VkCommandBufferBeginInfo beginInfo {}; beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; vkBeginCommandBuffer(commandBuffer, &beginInfo); VkRenderPassBeginInfo renderPassInfo {}; renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO; renderPassInfo.renderPass = renderPass; renderPassInfo.framebuffer = swapchainFramebuffers[imageIndex]; renderPassInfo.renderArea.offset = {0, 0}; renderPassInfo.renderArea.extent = swapchainExtent; VkClearValue clearColor = {{{0, 0, 0, 1}}}; renderPassInfo.clearValueCount = 1; renderPassInfo.pClearValues = &clearColor; vkCmdBeginRenderPass(commandBuffer, &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline); VkViewport viewport {}; viewport.x = 0; viewport.y = 0; viewport.width = static_cast(swapchainExtent.width); viewport.height = static_cast(swapchainExtent.height); viewport.minDepth = 0; viewport.maxDepth = 1; vkCmdSetViewport(commandBuffer, 0, 1, &viewport); VkRect2D scissor {}; scissor.offset = {0, 0}; scissor.extent = swapchainExtent; vkCmdSetScissor(commandBuffer, 0, 1, &scissor); VkBuffer buffers[] = {vertexBuffer}; VkDeviceSize offsets[] = {0}; vkCmdBindVertexBuffers(commandBuffer, 0, 1, buffers, offsets); vkCmdDraw(commandBuffer, vertices.size(), 1, 0, 0); vkCmdEndRenderPass(commandBuffer); vkEndCommandBuffer(commandBuffer); } std::vector imageAvailableSemaphores; std::vector renderFinishedSemaphores; std::vector inFlightFences; void createSyncObjects(){ imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT); renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT); inFlightFences.resize(MAX_FRAMES_IN_FLIGHT); VkSemaphoreCreateInfo semaphoreInfo {}; semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO; VkFenceCreateInfo fenceInfo {}; fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO; fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT; for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++){ vkCreateSemaphore(device, &semaphoreInfo, nullptr, &imageAvailableSemaphores[i]); vkCreateSemaphore(device, &semaphoreInfo, nullptr, &renderFinishedSemaphores[i]); vkCreateFence(device, &fenceInfo, nullptr, &inFlightFences[i]); } } size_t currentFrame = 0; void drawFrame(){ vkWaitForFences(device, 1, &inFlightFences[currentFrame], VK_TRUE, UINT64_MAX); uint32_t imageIndex; VkResult result = vkAcquireNextImageKHR(device, swapchain, UINT64_MAX, imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex); if (result == VK_ERROR_OUT_OF_DATE_KHR){ recreateSwapchain(); return; } vkResetFences(device, 1, &inFlightFences[currentFrame]); vkResetCommandBuffer(commandBuffers[currentFrame], 0); recordCommandBuffer(commandBuffers[currentFrame], imageIndex); VkSubmitInfo submitInfo {}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; VkSemaphore waitSemaphores[] = {imageAvailableSemaphores[currentFrame]}; VkPipelineStageFlags waitStages[] = {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT}; submitInfo.waitSemaphoreCount = 1; submitInfo.pWaitSemaphores = waitSemaphores; submitInfo.pWaitDstStageMask = waitStages; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &commandBuffers[currentFrame]; VkSemaphore signalSemaphores[] = {renderFinishedSemaphores[currentFrame]}; submitInfo.signalSemaphoreCount = 1; submitInfo.pSignalSemaphores = signalSemaphores; vkQueueSubmit(graphicsQueue, 1, &submitInfo, inFlightFences[currentFrame]); VkPresentInfoKHR presentInfo {}; presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR; presentInfo.waitSemaphoreCount = 1; presentInfo.pWaitSemaphores = signalSemaphores; VkSwapchainKHR swapchains[] = {swapchain}; presentInfo.swapchainCount = 1; presentInfo.pSwapchains = swapchains; presentInfo.pImageIndices = &imageIndex; result = vkQueuePresentKHR(presentQueue, &presentInfo); if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR){ recreateSwapchain(); return; } currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT; } void mainLoop(){ while (!glfwWindowShouldClose(window)){ glfwPollEvents(); drawFrame(); } vkDeviceWaitIdle(device); } void cleanup(){ cleanupSwapchain(); vkDestroyBuffer(device, vertexBuffer, nullptr); vkFreeMemory(device, vertexBufferMemory, nullptr); for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++){ vkDestroySemaphore(device, imageAvailableSemaphores[i], nullptr); vkDestroySemaphore(device, renderFinishedSemaphores[i], nullptr); vkDestroyFence(device, inFlightFences[i], nullptr); } vkDestroyCommandPool(device, commandPool, nullptr); vkDestroyPipeline(device, graphicsPipeline, nullptr); vkDestroyPipelineLayout(device, pipelineLayout, nullptr); vkDestroyRenderPass(device, renderPass, nullptr); vkDestroyDevice(device, nullptr); vkDestroySurfaceKHR(instance, surface, nullptr); vkDestroyInstance(instance, nullptr); glfwDestroyWindow(window); glfwTerminate(); } }; int main() { MyApp app; try { app.run(); } catch (const std::exception& e){ std::cerr << e.what() << "\n"; return EXIT_FAILURE; } return EXIT_SUCCESS; }