You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

557 lines
20 KiB

// ----------------------------------------------------------------------------
// <copyright file="PhotonTransformViewClassic.cs" company="Exit Games GmbH">
// PhotonNetwork Framework for Unity - Copyright (C) 2018 Exit Games GmbH
// </copyright>
// <summary>
// Component to synchronize Transforms via PUN PhotonView.
// </summary>
// <author>developer@exitgames.com</author>
// ----------------------------------------------------------------------------
namespace Photon.Pun
{
using UnityEngine;
using System.Collections.Generic;
/// <summary>
/// This class helps you to synchronize position, rotation and scale
/// of a GameObject. It also gives you many different options to make
/// the synchronized values appear smooth, even when the data is only
/// send a couple of times per second.
/// Simply add the component to your GameObject and make sure that
/// the PhotonTransformViewClassic is added to the list of observed components
/// </summary>
[AddComponentMenu("Photon Networking/Photon Transform View Classic")]
public class PhotonTransformViewClassic : MonoBehaviourPun, IPunObservable
{
//As this component is very complex, we separated it into multiple classes.
//The PositionModel, RotationModel and ScaleMode store the data you are able to
//configure in the inspector while the "control" objects below are actually moving
//the object and calculating all the inter- and extrapolation
[HideInInspector]
public PhotonTransformViewPositionModel m_PositionModel = new PhotonTransformViewPositionModel();
[HideInInspector]
public PhotonTransformViewRotationModel m_RotationModel = new PhotonTransformViewRotationModel();
[HideInInspector]
public PhotonTransformViewScaleModel m_ScaleModel = new PhotonTransformViewScaleModel();
PhotonTransformViewPositionControl m_PositionControl;
PhotonTransformViewRotationControl m_RotationControl;
PhotonTransformViewScaleControl m_ScaleControl;
PhotonView m_PhotonView;
bool m_ReceivedNetworkUpdate = false;
/// <summary>
/// Flag to skip initial data when Object is instantiated and rely on the first deserialized data instead.
/// </summary>
bool m_firstTake = false;
void Awake()
{
this.m_PhotonView = GetComponent<PhotonView>();
this.m_PositionControl = new PhotonTransformViewPositionControl(this.m_PositionModel);
this.m_RotationControl = new PhotonTransformViewRotationControl(this.m_RotationModel);
this.m_ScaleControl = new PhotonTransformViewScaleControl(this.m_ScaleModel);
}
void OnEnable()
{
m_firstTake = true;
}
void Update()
{
if (this.m_PhotonView == null || this.m_PhotonView.IsMine == true || PhotonNetwork.IsConnectedAndReady == false)
{
return;
}
this.UpdatePosition();
this.UpdateRotation();
this.UpdateScale();
}
void UpdatePosition()
{
if (this.m_PositionModel.SynchronizeEnabled == false || this.m_ReceivedNetworkUpdate == false)
{
return;
}
transform.localPosition = this.m_PositionControl.UpdatePosition(transform.localPosition);
}
void UpdateRotation()
{
if (this.m_RotationModel.SynchronizeEnabled == false || this.m_ReceivedNetworkUpdate == false)
{
return;
}
transform.localRotation = this.m_RotationControl.GetRotation(transform.localRotation);
}
void UpdateScale()
{
if (this.m_ScaleModel.SynchronizeEnabled == false || this.m_ReceivedNetworkUpdate == false)
{
return;
}
transform.localScale = this.m_ScaleControl.GetScale(transform.localScale);
}
/// <summary>
/// These values are synchronized to the remote objects if the interpolation mode
/// or the extrapolation mode SynchronizeValues is used. Your movement script should pass on
/// the current speed (in units/second) and turning speed (in angles/second) so the remote
/// object can use them to predict the objects movement.
/// </summary>
/// <param name="speed">The current movement vector of the object in units/second.</param>
/// <param name="turnSpeed">The current turn speed of the object in angles/second.</param>
public void SetSynchronizedValues(Vector3 speed, float turnSpeed)
{
this.m_PositionControl.SetSynchronizedValues(speed, turnSpeed);
}
public void OnPhotonSerializeView(PhotonStream stream, PhotonMessageInfo info)
{
this.m_PositionControl.OnPhotonSerializeView(transform.localPosition, stream, info);
this.m_RotationControl.OnPhotonSerializeView(transform.localRotation, stream, info);
this.m_ScaleControl.OnPhotonSerializeView(transform.localScale, stream, info);
if (stream.IsReading == true)
{
this.m_ReceivedNetworkUpdate = true;
// force latest data to avoid initial drifts when player is instantiated.
if (m_firstTake)
{
m_firstTake = false;
if (this.m_PositionModel.SynchronizeEnabled)
{
this.transform.localPosition = this.m_PositionControl.GetNetworkPosition();
}
if (this.m_RotationModel.SynchronizeEnabled)
{
this.transform.localRotation = this.m_RotationControl.GetNetworkRotation();
}
if (this.m_ScaleModel.SynchronizeEnabled)
{
this.transform.localScale = this.m_ScaleControl.GetNetworkScale();
}
}
}
}
}
[System.Serializable]
public class PhotonTransformViewPositionModel
{
public enum InterpolateOptions
{
Disabled,
FixedSpeed,
EstimatedSpeed,
SynchronizeValues,
Lerp
}
public enum ExtrapolateOptions
{
Disabled,
SynchronizeValues,
EstimateSpeedAndTurn,
FixedSpeed,
}
public bool SynchronizeEnabled;
public bool TeleportEnabled = true;
public float TeleportIfDistanceGreaterThan = 3f;
public InterpolateOptions InterpolateOption = InterpolateOptions.EstimatedSpeed;
public float InterpolateMoveTowardsSpeed = 1f;
public float InterpolateLerpSpeed = 1f;
public ExtrapolateOptions ExtrapolateOption = ExtrapolateOptions.Disabled;
public float ExtrapolateSpeed = 1f;
public bool ExtrapolateIncludingRoundTripTime = true;
public int ExtrapolateNumberOfStoredPositions = 1;
}
public class PhotonTransformViewPositionControl
{
PhotonTransformViewPositionModel m_Model;
float m_CurrentSpeed;
double m_LastSerializeTime;
Vector3 m_SynchronizedSpeed = Vector3.zero;
float m_SynchronizedTurnSpeed = 0;
Vector3 m_NetworkPosition;
Queue<Vector3> m_OldNetworkPositions = new Queue<Vector3>();
bool m_UpdatedPositionAfterOnSerialize = true;
public PhotonTransformViewPositionControl(PhotonTransformViewPositionModel model)
{
m_Model = model;
}
Vector3 GetOldestStoredNetworkPosition()
{
Vector3 oldPosition = m_NetworkPosition;
if (m_OldNetworkPositions.Count > 0)
{
oldPosition = m_OldNetworkPositions.Peek();
}
return oldPosition;
}
/// <summary>
/// These values are synchronized to the remote objects if the interpolation mode
/// or the extrapolation mode SynchronizeValues is used. Your movement script should pass on
/// the current speed (in units/second) and turning speed (in angles/second) so the remote
/// object can use them to predict the objects movement.
/// </summary>
/// <param name="speed">The current movement vector of the object in units/second.</param>
/// <param name="turnSpeed">The current turn speed of the object in angles/second.</param>
public void SetSynchronizedValues(Vector3 speed, float turnSpeed)
{
m_SynchronizedSpeed = speed;
m_SynchronizedTurnSpeed = turnSpeed;
}
/// <summary>
/// Calculates the new position based on the values setup in the inspector
/// </summary>
/// <param name="currentPosition">The current position.</param>
/// <returns>The new position.</returns>
public Vector3 UpdatePosition(Vector3 currentPosition)
{
Vector3 targetPosition = GetNetworkPosition() + GetExtrapolatedPositionOffset();
switch (m_Model.InterpolateOption)
{
case PhotonTransformViewPositionModel.InterpolateOptions.Disabled:
if (m_UpdatedPositionAfterOnSerialize == false)
{
currentPosition = targetPosition;
m_UpdatedPositionAfterOnSerialize = true;
}
break;
case PhotonTransformViewPositionModel.InterpolateOptions.FixedSpeed:
currentPosition = Vector3.MoveTowards(currentPosition, targetPosition, Time.deltaTime * m_Model.InterpolateMoveTowardsSpeed);
break;
case PhotonTransformViewPositionModel.InterpolateOptions.EstimatedSpeed:
if (m_OldNetworkPositions.Count == 0)
{
// special case: we have no previous updates in memory, so we can't guess a speed!
break;
}
// knowing the last (incoming) position and the one before, we can guess a speed.
// note that the speed is times sendRateOnSerialize! we send X updates/sec, so our estimate has to factor that in.
float estimatedSpeed = (Vector3.Distance(m_NetworkPosition, GetOldestStoredNetworkPosition()) / m_OldNetworkPositions.Count) * PhotonNetwork.SerializationRate;
// move towards the targetPosition (including estimates, if that's active) with the speed calculated from the last updates.
currentPosition = Vector3.MoveTowards(currentPosition, targetPosition, Time.deltaTime * estimatedSpeed);
break;
case PhotonTransformViewPositionModel.InterpolateOptions.SynchronizeValues:
if (m_SynchronizedSpeed.magnitude == 0)
{
currentPosition = targetPosition;
}
else
{
currentPosition = Vector3.MoveTowards(currentPosition, targetPosition, Time.deltaTime * m_SynchronizedSpeed.magnitude);
}
break;
case PhotonTransformViewPositionModel.InterpolateOptions.Lerp:
currentPosition = Vector3.Lerp(currentPosition, targetPosition, Time.deltaTime * m_Model.InterpolateLerpSpeed);
break;
}
if (m_Model.TeleportEnabled == true)
{
if (Vector3.Distance(currentPosition, GetNetworkPosition()) > m_Model.TeleportIfDistanceGreaterThan)
{
currentPosition = GetNetworkPosition();
}
}
return currentPosition;
}
/// <summary>
/// Gets the last position that was received through the network
/// </summary>
/// <returns></returns>
public Vector3 GetNetworkPosition()
{
return m_NetworkPosition;
}
/// <summary>
/// Calculates an estimated position based on the last synchronized position,
/// the time when the last position was received and the movement speed of the object
/// </summary>
/// <returns>Estimated position of the remote object</returns>
public Vector3 GetExtrapolatedPositionOffset()
{
float timePassed = (float)(PhotonNetwork.Time - m_LastSerializeTime);
if (m_Model.ExtrapolateIncludingRoundTripTime == true)
{
timePassed += (float)PhotonNetwork.GetPing() / 1000f;
}
Vector3 extrapolatePosition = Vector3.zero;
switch (m_Model.ExtrapolateOption)
{
case PhotonTransformViewPositionModel.ExtrapolateOptions.SynchronizeValues:
Quaternion turnRotation = Quaternion.Euler(0, m_SynchronizedTurnSpeed * timePassed, 0);
extrapolatePosition = turnRotation * (m_SynchronizedSpeed * timePassed);
break;
case PhotonTransformViewPositionModel.ExtrapolateOptions.FixedSpeed:
Vector3 moveDirection = (m_NetworkPosition - GetOldestStoredNetworkPosition()).normalized;
extrapolatePosition = moveDirection * m_Model.ExtrapolateSpeed * timePassed;
break;
case PhotonTransformViewPositionModel.ExtrapolateOptions.EstimateSpeedAndTurn:
Vector3 moveDelta = (m_NetworkPosition - GetOldestStoredNetworkPosition()) * PhotonNetwork.SerializationRate;
extrapolatePosition = moveDelta * timePassed;
break;
}
return extrapolatePosition;
}
public void OnPhotonSerializeView(Vector3 currentPosition, PhotonStream stream, PhotonMessageInfo info)
{
if (m_Model.SynchronizeEnabled == false)
{
return;
}
if (stream.IsWriting == true)
{
SerializeData(currentPosition, stream, info);
}
else
{
DeserializeData(stream, info);
}
m_LastSerializeTime = PhotonNetwork.Time;
m_UpdatedPositionAfterOnSerialize = false;
}
void SerializeData(Vector3 currentPosition, PhotonStream stream, PhotonMessageInfo info)
{
stream.SendNext(currentPosition);
m_NetworkPosition = currentPosition;
if (m_Model.ExtrapolateOption == PhotonTransformViewPositionModel.ExtrapolateOptions.SynchronizeValues ||
m_Model.InterpolateOption == PhotonTransformViewPositionModel.InterpolateOptions.SynchronizeValues)
{
stream.SendNext(m_SynchronizedSpeed);
stream.SendNext(m_SynchronizedTurnSpeed);
}
}
void DeserializeData(PhotonStream stream, PhotonMessageInfo info)
{
Vector3 readPosition = (Vector3)stream.ReceiveNext();
if (m_Model.ExtrapolateOption == PhotonTransformViewPositionModel.ExtrapolateOptions.SynchronizeValues ||
m_Model.InterpolateOption == PhotonTransformViewPositionModel.InterpolateOptions.SynchronizeValues)
{
m_SynchronizedSpeed = (Vector3)stream.ReceiveNext();
m_SynchronizedTurnSpeed = (float)stream.ReceiveNext();
}
if (m_OldNetworkPositions.Count == 0)
{
// if we don't have old positions yet, this is the very first update this client reads. let's use this as current AND old position.
m_NetworkPosition = readPosition;
}
// the previously received position becomes the old(er) one and queued. the new one is the m_NetworkPosition
m_OldNetworkPositions.Enqueue(m_NetworkPosition);
m_NetworkPosition = readPosition;
// reduce items in queue to defined number of stored positions.
while (m_OldNetworkPositions.Count > m_Model.ExtrapolateNumberOfStoredPositions)
{
m_OldNetworkPositions.Dequeue();
}
}
}
[System.Serializable]
public class PhotonTransformViewRotationModel
{
public enum InterpolateOptions
{
Disabled,
RotateTowards,
Lerp,
}
public bool SynchronizeEnabled;
public InterpolateOptions InterpolateOption = InterpolateOptions.RotateTowards;
public float InterpolateRotateTowardsSpeed = 180;
public float InterpolateLerpSpeed = 5;
}
public class PhotonTransformViewRotationControl
{
PhotonTransformViewRotationModel m_Model;
Quaternion m_NetworkRotation;
public PhotonTransformViewRotationControl(PhotonTransformViewRotationModel model)
{
m_Model = model;
}
/// <summary>
/// Gets the last rotation that was received through the network
/// </summary>
/// <returns></returns>
public Quaternion GetNetworkRotation()
{
return m_NetworkRotation;
}
public Quaternion GetRotation(Quaternion currentRotation)
{
switch (m_Model.InterpolateOption)
{
default:
case PhotonTransformViewRotationModel.InterpolateOptions.Disabled:
return m_NetworkRotation;
case PhotonTransformViewRotationModel.InterpolateOptions.RotateTowards:
return Quaternion.RotateTowards(currentRotation, m_NetworkRotation, m_Model.InterpolateRotateTowardsSpeed * Time.deltaTime);
case PhotonTransformViewRotationModel.InterpolateOptions.Lerp:
return Quaternion.Lerp(currentRotation, m_NetworkRotation, m_Model.InterpolateLerpSpeed * Time.deltaTime);
}
}
public void OnPhotonSerializeView(Quaternion currentRotation, PhotonStream stream, PhotonMessageInfo info)
{
if (m_Model.SynchronizeEnabled == false)
{
return;
}
if (stream.IsWriting == true)
{
stream.SendNext(currentRotation);
m_NetworkRotation = currentRotation;
}
else
{
m_NetworkRotation = (Quaternion)stream.ReceiveNext();
}
}
}
[System.Serializable]
public class PhotonTransformViewScaleModel
{
public enum InterpolateOptions
{
Disabled,
MoveTowards,
Lerp,
}
public bool SynchronizeEnabled;
public InterpolateOptions InterpolateOption = InterpolateOptions.Disabled;
public float InterpolateMoveTowardsSpeed = 1f;
public float InterpolateLerpSpeed;
}
public class PhotonTransformViewScaleControl
{
PhotonTransformViewScaleModel m_Model;
Vector3 m_NetworkScale = Vector3.one;
public PhotonTransformViewScaleControl(PhotonTransformViewScaleModel model)
{
m_Model = model;
}
/// <summary>
/// Gets the last scale that was received through the network
/// </summary>
/// <returns></returns>
public Vector3 GetNetworkScale()
{
return m_NetworkScale;
}
public Vector3 GetScale(Vector3 currentScale)
{
switch (m_Model.InterpolateOption)
{
default:
case PhotonTransformViewScaleModel.InterpolateOptions.Disabled:
return m_NetworkScale;
case PhotonTransformViewScaleModel.InterpolateOptions.MoveTowards:
return Vector3.MoveTowards(currentScale, m_NetworkScale, m_Model.InterpolateMoveTowardsSpeed * Time.deltaTime);
case PhotonTransformViewScaleModel.InterpolateOptions.Lerp:
return Vector3.Lerp(currentScale, m_NetworkScale, m_Model.InterpolateLerpSpeed * Time.deltaTime);
}
}
public void OnPhotonSerializeView(Vector3 currentScale, PhotonStream stream, PhotonMessageInfo info)
{
if (m_Model.SynchronizeEnabled == false)
{
return;
}
if (stream.IsWriting == true)
{
stream.SendNext(currentScale);
m_NetworkScale = currentScale;
}
else
{
m_NetworkScale = (Vector3)stream.ReceiveNext();
}
}
}
}