// Fill out your copyright notice in the Description page of Project Settings. #include "Joint.h" #include "Link.h" #include "util.h" #include "Kismet/KismetMathLibrary.h" Vector3d UJoint::GetFirstWorldPosition() const{ return FirstLink->Position + FirstLink->Orientation * FirstLocalPosition; } Vector3d UJoint::GetSecondWorldPosition() const{ return SecondLink->Position + SecondLink->Orientation * SecondLocalPosition; } Vector3d UJoint::GetFirstWorldAxis() const{ return FirstLink->Orientation * FirstRotateAxis; } Vector3d UJoint::GetSecondWorldAxis() const{ return SecondLink->Orientation * SecondRotateAxis; } void UJoint::SolvePosition(const double H) const{ ULink* L1 = FirstLink; ULink* L2 = SecondLink; // Positional Constraints { const Vector3d R1 = GetFirstWorldPosition(); const Vector3d R2 = GetSecondWorldPosition(); const Vector3d D = R1 - R2; // Original PBD (not R2 - R1), because Impulse P is negated const Vector3d N = D.normalized(); const double C = D.norm(); const Matrix3d I1 = L1->GetInertia(); const Matrix3d I2 = L2->GetInertia(); const double M1 = L1->Mass; const double M2 = L2->Mass; const double W1 = L1->GetPositionalInverseMass(R1, N); const double W2 = L2->GetPositionalInverseMass(R2, N); constexpr double A = 1. / 1000000; // Compliance (inverse of stiffness) const Vector3d P = -C / (W1 + W2 + A / (H * H)) * N; L1->Position += P / M1; L2->Position -= P / M2; Vector3d T1 = I1.inverse() * R1.cross(P); Vector3d T2 = I2.inverse() * R2.cross(P); Quaterniond Add1 = Quaterniond(0, T1.x(), T1.y(), T1.z()) * L1->Orientation * 0.5; Quaterniond Add2 = Quaterniond(0, T2.x(), T2.y(), T2.z()) * L2->Orientation * 0.5; //L1->Orientation = L1->Orientation + Add1; //L2->Orientation = L2->Orientation- Add2; //UE_LOG(LogTemp, Log, TEXT("%f %f"), (T1).norm(), T2.norm()); } // Rotational Constraints { const Vector3d A1 = GetFirstWorldAxis(); const Vector3d A2 = GetSecondWorldAxis(); const Vector3d Q = A1.cross(A2); const Vector3d N = Q.normalized(); const double Theta = Q.norm(); const Matrix3d I1 = L1->GetInertia(); const Matrix3d I2 = L2->GetInertia(); const double W1 = L1->GetRotationalInverseMass(N); const double W2 = L2->GetRotationalInverseMass(N); const double A = 0.000001 / (H * H); const Vector3d P = -Theta / (W1 + W2 + A) * N; Vector3d T1 = I1.inverse() * P; Vector3d T2 = I2.inverse() * P; T1 = T2 = P; //L1->Orientation += Quaterniond(0, T1.x(), T1.y(), T1.z()) * L1->Orientation * 0.5; //L2->Orientation -= Quaterniond(0, T2.x(), T2.y(), T2.z()) * L2->Orientation * 0.5; // UE_LOG(LogTemp, Log, TEXT("%f | %f"), W1, W2); } } void UJoint::SolveVelocity(const double H) const{ ULink* L1 = FirstLink; ULink* L2 = SecondLink; // Damping const Vector3d V1 = L1->Velocity; const Vector3d V2 = L2->Velocity; constexpr double MuLin = 100000; // Damping strength const Vector3d DeltaV = (V2 - V1) * UKismetMathLibrary::Min(MuLin * H, 1); const Vector3d R1 = GetFirstWorldPosition(); const Vector3d R2 = GetSecondWorldPosition(); const Vector3d N = (R2 - R1).normalized(); const Matrix3d I1 = L1->GetInertia(); const Matrix3d I2 = L2->GetInertia(); const double W1 = L1->GetPositionalInverseMass(R1, N); const double W2 = L2->GetPositionalInverseMass(R2, N); const Vector3d P = DeltaV / (W1 + W2); // UE_LOG(LogTemp, Log, TEXT("%f | %f"), (V2 - V1).norm(), MuLin * H); L1->Velocity += P / L1->Mass; L2->Velocity -= P / L2->Mass; //L1->AngularVelocity += I1.inverse() * R1.cross(P); //L2->AngularVelocity -= I2.inverse() * R2.cross(P); } UJoint::UJoint() { }